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Abstract

Purpose – The purpose of this paper is to describe a variational multiscale finite element
approximation for the incompressible Navier-Stokes equations using the Boussinesq approximation
to model thermal coupling.
Design/methodology/approach – The main feature of the formulation, in contrast to other
stabilized methods, is that the subscales are considered as transient and orthogonal to the finite
element space. These subscales are solution of a differential equation in time that needs to be
integrated. Likewise, the effect of the subscales is kept, both in the nonlinear convective terms of the
momentum and temperature equations and, if required, in the thermal coupling term of the
momentum equation.
Findings – This strategy allows the approaching of the problem of dealing with thermal turbulence
from a strictly numerical point of view and discussion important issues, such as the relationship
between the turbulent mechanical dissipation and the turbulent thermal dissipation.
Originality/value – The treatment of thermal turbulence from a strictly numerical point of view is
the main originality of the work.
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Paper type Research paper

1. Introduction
Let � � Rd , with d ¼ 2, 3, be the computational domain in which the flow takes place
during the time interval [0,T], and let � be its boundary. The initial and boundary value
problem to be considered consists in finding a velocity field u, a pressure field p and a
temperature field # such that:

@tu þ u � ru � ��u þrpþ �g# ¼ f þ �g#0 in �; t 2 ð0;TÞ; ð1Þ

r � u ¼ 0 in �; t 2 ð0;TÞ; ð2Þ

@t#þ u � r#� ��# ¼ Q in �; t 2 ð0;TÞ; ð3Þ
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u ¼ 0 on �; t 2 ð0;TÞ; ð4Þ

u ¼ u0 in �; t ¼ 0; ð5Þ

# ¼ 0 on �; t 2 ð0;TÞ; ð6Þ

# ¼ #0 in �; t ¼ 0: ð7Þ

In these equations, � is the kinematic viscosity, � the thermal diffusivity, � the thermal
expansion coefficient, f the external body forces, #0 the reference temperature, g the
gravity acceleration vector, Q the heat source and u0 and #0 the initial conditions for
velocity and temperature, respectively.

The literature on the finite element approximation of problems (1)-(7) is vast (see for
example, the introductory text Reddy and Gartling, (1994)). The spatial discretization
suffers from the well-known problems of compatibility conditions between the velocity
and pressure finite element spaces as well as the instabilities due to convection
dominated flows, in this case both in the momentum, Equation (1) and the heat
Equation (3).

Apart from numerical difficulties, the physics modelled by Equations (1)-(7) is
extremely complex. In particular, turbulence should be in principle modelled by this
system of equations. Since it is commonly accepted that turbulent scales cannot be
captured in most applications, turbulence models of different complexity have been
developed (see Wilcox, 1993; Hinze, 1975 for background).

In recent years, the idea of using numerical techniques able to cope with the
potential instabilities and to model turbulence at the same time has gained adepts, in
particular within the variational multiscale concept introduced in Hughes (1995),
Hughes et al. (1998). The original motivation of this type of formulations was to
justify the so called stabilized finite element methods. The possibility to model
turbulence was remarked in Codina (2002) by contrast with the option adopted in
Hughes et al. (2000) to add a large-eddy-simulation (LES) type model for the subgrid
scales (see Remark 6 in Codina, 2002 and, for background on LES models (Pope,
2000)). In Bazilevs et al. (2007) the possibility to model turbulence using only
numerical ingredients within the variational multiscale context is fully and
successfully exploited. The role of numerical stabilization terms to model turbulence
had also been envisaged in de Sampaio et al. (2004), Hoffman and Johnson (2006), for
example. For similar ideas using other numerical formulations, see Boris et al.
(1992), Sagaut (2001) and references therein.

The purpose of this paper is to give an overview of the finite element model
proposed in Hughes (1995), Codina et al. (2007), Guasch and Codina (n.d.), Principe et al.
(2010), Codina and Principe (2007) and to present a complete description of its main
properties, including the latest results obtained. It turns out that these properties
support our view of modelling thermal turbulence from a strictly numerical point of
view. Even though we restrict ourselves to the Boussinesq model described above,
similar ideas can be applied to more complex thermally coupled flow models, as the
low Mach number model whose finite element approximation is described in Principe
and Codina (2008). Our formulation is reviewed in section 2, where some additional
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developments concerning the modelling of the subgrid scales are included. Section 3
contains a thorough discussion about the conservation properties of the scheme and
the energy transfer mechanisms, which are relevant to model turbulent flows. In
particular, we show how the numerical model we propose allows for a natural scale
splitting in the energy balance, both in the mechanical and in the thermal problems.
Likewise, the relationship with the dissipation introduced by classical LES models is
described. Section 4 presents the results of two numerical examples, one of them
showing the transition to turbulence as the Rayleigh number increases and the other
showing the results of a numerical simulation of a turbulent flow. Conclusions and final
remarks close the paper in section 5.

2. Finite element approximation
2.1 Variational formulation
To define the functional setting, let H 1ð�Þ be the space of functions such that they
and their first derivatives belong to L2ð�Þ (that is, they are square integrable), and let
H 1

0 ð�Þ be the subspace of functions in H 1ð�Þ vanishing on the boundary. Let
also V st ¼ H 1

0 ð�Þ
d , Qst ¼ L2ð�Þ=R, �st ¼ H 1

0 ð�Þ and define V ¼ L2ð0;T; V stÞ,
Q ¼ L1ð0;T; QstÞ (for example) and � ¼ L2ð0;T; �stÞ, where Lpð0;T; XÞ stands of
the space of functions such that their X norm in the spatial argument is an Lpð0;TÞ
function in time, that is, its p-th power is integrable if 1 � p <1 or bounded if
p ¼ 1.

The weak form of the problem consists in finding ðu; p; #Þ 2 V � Q�� such that:

ð@tu; vÞ þ hu � ru; vi þ �ðru;rvÞ � ðp;r � vÞ þ �ðg#; vÞ ¼ hf ; vi
þ �ðg#0; vÞ;

ð8Þ

ðq;r � uÞ ¼ 0; ð9Þ

ð@t#;  Þ þ hu � r#;  i þ �ðr#;r Þ ¼ hQ;  i; ð10Þ

for all ðv; q;  Þ 2 V st � Qst ��st, where ð�; �Þ denotes the L2ð�Þ inner product and
hf ; gi :¼

Ð
� fg whenever functions f and g are such that the integral is well defined.

The dimensionless numbers relevant in this problem are:

Re :¼ LU

�
; Reynolds number ð11aÞ

Pe :¼ LU

�
; Péclet number ð11bÞ

Pr :¼ �

�
; Prandtl number ð11cÞ

Ra :¼ �jg jL
3�#

��
; Rayleigh number ð11dÞ

where L is a characteristic length of the problem, U a characteristic velocity and �# a
characteristic temperature difference, usually computed from temperature boundary
values when these are not zero. When U cannot be determined by the boundary
conditions, for example because zero velocities are prescribed, U ¼ �=L can be taken,
which corresponds to choose Re ¼ 1 and gives Pe ¼ Pr.
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2.2 Scale splitting
Let us consider a finite element partition {K} with ne elements of the computational
domain �, from which we can construct finite element spaces for the velocity, pressure
and temperature in the usual manner. We will assume that they are all built from
continuous piecewise polynomials of the same degree k.

The basic idea of the multiscale approach we will follow (Hughes et al., 1998) is to
split the continuous unknowns as:

u ¼ uh þ ~uu; ð12Þ

p ¼ ph þ ~pp; ð13Þ

# ¼ #h þ ~##; ð14Þ

where the components with subscript h belong to the corresponding finite element
spaces. The components with a tilde belong to any space such that its direct sum with
the finite element space yields the functional space where the unknown is sought. For
the moment, we leave it undefined. These additional components are what we will
call subscales. Each particular variational multiscale method will depend on the way
the subscales are approximated. Our main focus in this work is to explain the
consequences of considering these subscales time dependent, and therefore requiring
to be integrated in time. Likewise, we will keep the previous decompositions (12)-(14)
in all the terms of the variational equations of the problem. As we shall see, this has
important consequences in the modelling of thermally coupled turbulent flows. The
only approximation we will make for the moment is to assume that the subscales
vanish on the interelement boundaries, @�e. This happens for example if one
assumes that their Fourier modes correspond to high wave numbers, as it is
explained in Codina (2002), but can be relaxed using the approach proposed in Codina
et al. (2009).

From the previous splitting two sets of equations can be obtained. The first is the
projection of the original equations onto the finite element spaces of velocity, pressure
and temperature. On the other hand, the equations for the subscales are obtained by
projecting onto their corresponding spaces, that is, by taking the test function ~vv in
the space of subscales instead of in the finite element space. If ~PP denotes the
projection onto any of the subscale spaces (for velocity, pressure or temperature), these
equations are:

~PP½@t ~uu þ ðuh þ ~uuÞ � r~uu � ��~uu þr~ppþ �g ~##� ¼ ~PPðRuÞ; ð15Þ

~PPðr � ~uuÞ ¼ ~PPðRpÞ; ð16Þ

~PP½@t
~##þ ðuh þ ~uuÞ � r ~##� �� ~##� ¼ ~PPðR#Þ; ð17Þ
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where:

Ru ¼ f þ �g#0 � ½@tuh þ ðuh þ ~uuÞ � ruh � ��huh þrph þ �g#h�;

Rp ¼ �r � uh;

R# ¼ Q� ½@t#h þ ðuh þ ~uuÞ � r#h � ��h#h�;

are the residuals of the finite element unknowns in the momentum, continuity and heat
equation, respectively. Equations (15)-(17) need to be solved within each element and,
as we have assumed, considering homogeneous velocity and temperature Dirichlet
boundary conditions.

2.3 Approximation of the subscales I: general procedure
In this subsection, we present a general procedure to approximate the subscales in
problems (15)-(17) and, in particular, of the spatial differential operators applied to the
subgrid scales. To this end, let us consider an element K of the finite element partition
and a problem of the form:

Lu0 ¼ rh in K; ð18Þ

which needs to be completed with boundary conditions. As indicated previously,
u0 ¼ 0 on @K is a possibility. In the model problem (18), the unknown u0 is assumed to
have a vector character, although no particular notation will be used to specify it.
Likewise, the forcing term rh is also a vector. The number of components of both u0 and
rh will be denoted by n.

Our objective is to obtain a n � n diagonal matrix � such that:

u0 � � rh in each K; ð19Þ

so that � � L�1 with the appropriate boundary conditions. In the following subsection,
this approximation will be used for the spatial operator arising from the linearization of
the left-hand-side in Equations (15)-(17), now u0 being composed of the velocity
components, the pressure and the temperature.

In order to obtain Equation (19), we use a heuristic Fourier analysis, introduced in
Codina (2002) and extended in Codina et al. (2008), for example. Let us denote the
Fourier transform byb . Let k=h be the wave number, with k dimensionless. The basic
heuristic assumption is that u0 is highly fluctuating, and therefore dominated by high
wave numbers. As a consequence, we may assume that

. Values of u0 on @K can be neglected to approximate u0 in the interior of K.

. The Fourier transform can be evaluated as for functions vanishing on @K (and
extended to Rd by zero).

The Fourier-transformed equation for the subscales will be:

L̂LðkÞûu0ðkÞ ¼ r̂rhðkÞ:

Before proceeding, it is crucial to discuss the proper scaling of this problem. Let u be an
element in the domain of L and f an element in its range. Suppose that Lu ¼ f is
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written in such a way that f tu ¼
Pn

i¼1 fiui is dimensionally well defined. In general, if

f, g 2 rangeL and u; v 2 domL:

f tg ¼
Xn

i¼1

figi; utv ¼
Xn

i¼1

uivi

may not be dimensionally meaningful. This is the case for example when the

unknowns are u ¼ ðu; p; #Þ, as in our case.

Let M be a scaling matrix, diagonal and with positive diagonal entries, that makes

the products f tMg and utM�1v dimensionally consistent. Let also:

jf j2M :¼ f tMf M -norm of f

juj2M�1 :¼ utM�1u M�1-norm of u

kfkL2
M
ðKÞ :¼

ð
K

jf j2M

A simple stability analysis, which will be omitted here, dictates that matrix � must be

such that kLkL2
M
ðKÞ � k��1kL2

M
ðKÞ. This will be the basic approximation condition of L

by a diagonal matrix. In order to devise a way to satisfy it, let us note that:

kLuk2
L2

M
ðKÞ ¼

ð
K

jLuj2M dx

�
ð

Rd
jL̂LðkÞûuðkÞj2M dk

�
ð

Rd
jL̂LðkÞj2M jûuðkÞj

2
M�1 dk

¼ jL̂Lðk0Þj2M
ð

Rd
jûuðkÞj2M�1 dk

� jL̂Lðk0Þj2Mkuk
2
L2

M�1
ðKÞ;

where the first approximation comes from the fact that boundary values of u0 have

been discarded and k0 is a wave number whose existence follows from the mean value

theorem. From the previous development, we have that kLkL2
M
ðKÞ � jL̂Lðk

0ÞjM . Our

proposal is to choose � diagonal and such that jL̂Lðk0ÞjM ¼ j��1jM . A particular way to

achieve this is the following, let:

�maxðk0Þ ¼ max specM�1ðL̂Lðk0Þ	M L̂Lðk0ÞÞ; ð20Þ

where � 2 specM�1 A if there exists x such that Ax ¼ �M�1x. Then, we may require

that ��1M��1 ¼ �maxM�1, that is to say M��1 ¼ �1=2
maxðk0ÞI, from where:
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� ¼ ��1=2
max ðk

0ÞM : ð21Þ

The components of k0 have to be understood as algorithmic constants.

2.4 Approximation of the subscales II: application to thermally coupled flows
Let us apply the previous ideas to the spatial differential operator appearing in
Equations (15)-(17). If we call a ¼ uh þ ~uu and consider it given as linearization
strategy, and constant to allow the approximation of the Fourier transform, in the two-
dimensional (2D) case it is found that:

L̂LðkÞ ¼
�jkj2 þ iajkj 0 ik1 �g1s#

0 �jkj2 þ iajkj ik2 �g2s#
ik1 ik2 0 0
0 0 0 s#ð�jkj2 þ iajkjÞ

2664
3775; ð22Þ

where i ¼
ffiffiffiffiffiffi
�1
p

and s# is a scaling factor for the temperature, such that f � u and
s�1
# Q# have the same dimensions, that is to say, the dimensions of s# must be

[temperature]2 [velocity]�2. It could be for example s# ¼ �#2U�2 , where �# and U are
the characteristic values for temperature and velocity to define the dimensionless
numbers in Equation (11). The superscript in the wave number in Equation (22) has
been omitted.

Let us introduce the stabilization parameters �1, �2 and �3, computed as:

�1 ¼ c1
�

h2

� �2

þ c2
juh þ ~uuj

h

� �2
" #�1=2

; ð23Þ

�2 ¼
h2

c1�1
; ð24Þ

�3 ¼ c1
�

h2

� �2

þ c2
juh þ ~uuj

h

� �2
" #�1=2

; ð25Þ

where h is the element size and c1 and c2 are algorithmic constants (we have adopted
c1 ¼ 4 and c2 ¼ 2 in the numerical experiments) that approximate h2jkj2 and hjkj
multiplied by the cosine of the angle formed by k with uh þ ~uu.

A possible scaling matrix in this particular problem (in 2D) is:

M ¼ diagð�1; �1; �2; �3s�1
# Þ:

If this matrix is used to solve the eigenvalue problem in Equation (20), with L̂LðkÞ given
by Equation (22), it is found that:

�max ¼
3

2
þ 1

2
!þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 6!þ !2

p
; ! :¼ �1�3�

2jg j2s#
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Suppose that the problem has a characteristic velocity U. Let us identify with a
subscript h the analogous of the dimensionless numbers defined in Equation (11)
evaluated with the element size instead of L. If s# ¼ �#2U�2, as explained above, it
may be readily seen that:

! 
 Ra2
hPe�1

h Re�1
h ð1þ PehÞ�1ð1þ RehÞ�1;

where ~ stands for equality up to constants.
If the Boussinesq assumption is valid we may assume ! small, expand

�max and keep only the lower order terms. However, our systematic approach
will yield in this case a conservative value of �

�1=2
max . For example, for ! ¼ 0 we would

find �max ¼ ð3=2Þ þ ð
ffiffiffi
5
p

=2Þ, whereas when there is no coupling �max ¼ 1 could
be taken.

In the following analysis, we will consider the simplest approximation �
�1=2
max ¼ 1.

Therefore, our final approximation for the subgrid scales will be:

@t ~uu þ
1

�1

~uu ¼ ~PPðRuÞ; ð26Þ

1

�2

~pp ¼ ~PPðRp þ �1@tRpÞ; ð27Þ

@t
~##þ 1

�3

~## ¼ ~PPðR#Þ: ð28Þ

When the time derivative of the subscales is neglected, we will call them quasi-static,
whereas otherwise we will call them dynamic.

2.5 Final approximate problem in space
Substituting Equations (12)-(14) into Equations (8)-(10), taking the test functions in the
corresponding finite element spaces and integrating some terms by parts, and using
the fact that u ¼ uh þ ~uu is divergence free, it is found that:

ð@tuh; vhÞ þ ðuh � ruh; vhÞ þ �ðruh;rvhÞ � ðph;r � vhÞ þ �ðg#h; vhÞ
� h~uu; ��hvh þ uh � rvhi þ ð@t ~uu; vhÞ þ h~uu � ruh; vhi
� h~uu; ~uu � rvhi � ð~pp;r � vhÞ þ �ðg ~##; vhÞ ¼ hf ; vhi þ �ðg#0; vhÞ;

ð29Þ

ðqh;r � uhÞ � ð~uu;rqhÞ ¼ 0; ð30Þ

ð@t#h;  hÞ þ huh � r#h;  hi þ �ðr#h;r hÞ
� h ~##; ��h h þ uh � r hi þ ð@t

~##;  hÞ þ h~uu � r#h;  hi
� h ~##; ~uu � r hi ¼ hQ;  hi;

ð31Þ

which must hold for all test functions ðvh; qh;  hÞ 2 V h � Qh ��h. The subindex h in
the Laplacian denotes that it is evaluated elementwise. The subscales in these
equations are obtained from Equations (26)-(28).
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The first approximation involved in the previous equations is to assume that the
subscales vanish at the interelement boundaries. The final numerical scheme is
obtained by approximating these subscales in the element interiors, in our case
by means of Equations (26)-(28). These equations however still require the definition of
the projections ~PP . Classical stabilized finite element methods correspond to taking
~PP ¼ I (identity) when applied to the corresponding finite element residual. Our
proposal however is to take ~PP ¼ P?h ¼ I � Ph, where Ph is the L2 projection onto
the finite element space (see (Codina, 2002) and, for an analysis of the method for a
stationary and linearized problem (Codina, 2008)). This leads to what we call
orthogonal subscale stabilization (OSS). When this is used in Equations (29)-(31)
one gets:

ð@tuh; vhÞ þ huh � ruh; vhi þ �ðruh;rvhÞ � ðph;r � vhÞ þ �ðg#h; vhÞ
� h~uu; ��hvh þ uh � rvhi þ h~uu � ruh; vhi � h~uu; ~uu � rvhi
� ð~pp;r � vhÞ ¼ hf ; vhi þ �ðg#0; vhÞ;

ð32Þ

ðqh;r � uhÞ � ð~uu;rqhÞ ¼ 0; ð33Þ

ð@t#h;  hÞ þ huh � r#h;  hi þ �ðr#h;r hÞ � h ~##; ��h h þ uh � r hi
þ h~uu � r#h;  hi � h ~##; ~uu � r hi ¼ hQ;  hi:

ð34Þ

Note that ð@t ~uu; vhÞ and �ðg ~##; vhÞ vanish in Equation (29) and ð@t
~##;  hÞ vanishes in

Equation (31) because of the choice ~PP ¼ P?h .
Any time discretization can now be applied to obtain a fully discrete problem.

2.6 Main properties of the formulation
The first and most important point to be considered is the effect of considering the
subscales dynamic, and therefore to deal with their time variation. Some of these
properties are:

(1) The effect of the time integration is now clear. Certainly, when the time
discretization is introduced the effective stabilization parameters have to be
modified (as it is done for example in Bazilevs et al. (2007), Shakib and
Hughes (1991), Tezduyar and Sathe (2003)), but when the steady-state is
reached the subscale ~uu that is obtained as solution to Equation (26) satisfies
~uu ¼ �1

~PPðRuÞ, so that the usual expression employed for stationary problems is
recovered.

(2) Suppose for example that the backward Euler scheme is used to integrate
Equation (26). From the point of view of the algebraic solver, the factor
ð1=�tÞ þ ð1=�1Þð Þ�1, instead of �1 multiplying ~PPðRuÞ is crucial for the

conditioning of the system matrix. If �1 is used as stabilization factor, when
�t ! 0 (and thus the leading terms are those coming from the discretization of
the time derivative) both the Galerkin and stabilizing terms could lead to matrix
terms of the same order and the condition number of the matrix of the Galerkin
method could be deteriorated.

(3) It is clear that space discretization (understood as scale splitting) and time
discretization commute, that is time discretization þ stabilization (scale
splitting) ¼ stabilization (scale splitting) þ time discretization.
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(4) Numerical experiments show that the temporal time integration is significantly
improved:

. oscillations originated by initial transients are eliminated; and

. the numerical dissipation is minimized.

For the numerical results that demonstrate this fact we refer to Codina et al.
(2007), Codina and Principe (2007). This is also observed in the numerical
experiments of section 4.

(5) The numerical analysis shows optimal stability without any restriction between
�1 and �t. Contrary to classical stabilized methods, anisotropic space-time
discretizations are allowed (Bochev et al., 2007). See (Codin et al., 2007) for a
stability analysis of the linearized Navier-Stokes equations and (Badia and
Codina, 2009) for a complete stability and convergence analysis for the Stokes
problem.

Another very important issue of the formulation presented is the possibility to model
turbulent flows. The terms involving the velocity subgrid scale arising from the
convective term in the Navier-Stokes equations are h~uu; ~uu � rvhi ¼ hrvh; ~uu � ~uui,
which can be understood as the contribution from the Reynolds tensor an LES
approach, and �h~uu;uh � rvhi þ h~uu � ruh; vhi, which can be understood as the
contribution from the cross stresses. Therefore, we may expect that, in some sense,
modelling ~uu implies to model the subgrid scale tensor. The question is how good this
model will be. The numerical models proposed here yield two possibilities depending
on the projection chosen, but others can be devised.

Related to the way turbulence is modelled, the numerical formulation proposed has
an inherent turbulent Prandtl number. In other words, it is not necessary to specify
which is the amount of turbulent thermal dissipation, but emanates directly from the
formulation. This issue is further discussed later on.

3. Conservation properties and energy transfer mechanisms
In this section, we discuss some conservation properties and the dissipative structure
of the formulation proposed which are relevant for the numerical modelling of
thermally coupled turbulent flows. In order to simplify a bit the exposition, we will
consider the parameter �2 ¼ 0, that is to say, ~pp ¼ 0 in Equation (27).

Another important remark is that the expression used for the convective term might
not be the most convenient one. For divergence free velocity fields vanishing on the
domain boundary, we have that:

hu � ru; vi ¼ �hu � u;rvi ¼ 1

2
hu � ru; vi � 1

2
hu � u;rvi:

Any of these expressions can be used in the convective term of the approximate Navier-
Stokes equations without altering the consistency. However, the discrete problem has
different properties, as we will see. Thus, given a vector field a we introduce:
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cuða; u;vÞ ¼
cnc
u ða; u;vÞ ¼ ha � ru;vi; Non-conservative form

cc
uða; u;vÞ ¼ �ha � u;rvi; Conservative form

css
u ða; u;vÞ ¼ 1

2
ha � ru;vi � 1

2
ha � u;rvi; Skew-symmetric form

8><>:
ð35Þ

Similarly, for the temperature equation we introduce:

c#ða;#;  Þ ¼
cnc
# ða;#;  Þ ¼ ha � r#;  i; Non-conservative form

cc
#ða;#;  Þ ¼ �ha#;r i; Conservative form

css
# ða;#;  Þ ¼ 1

2
ha � r#;  i � 1

2
ha#;r i; Skew-symmetric form

8><>:
ð36Þ

The terms ‘‘conservative’’ and ‘‘non-conservative’’ are classical in the CFD community.
The term ‘‘skew-symmetric’’ refers to the fact that:

css
u ða; u;uÞ ¼ 0; css

# ða;#; #Þ ¼ 0;

even if a is not divergence free.
In order to study the conservation properties of the scheme, we consider the extended

problem which includes the boundary fluxes BR;uðvhÞ and BR;#ð hÞ in the Navier Stokes
and heat equations (Hughes and Wells, 2005). These fluxes may include contributions
from the convective term when a is not divergence free, which may change according to
the form used for this term (non-conservative, conservative or skew symmetric). This
problem can be understood locally in a region R formed by an arbitrary set of elements
(Principe et al., Hughes and Wells, 2005), case in which boundary contributions come
from the fluxes exchanged with the rest of the computational domain.

Using the approximation �2 ¼ 0, defining a ¼ uh þ ~uu (which is solenoidal prior to
the approximation of the subscales), introducing the possibilities for the convective
term described and accounting for the boundary fluxes, problems (32)-(34) can be
reformulated as:

ð@tuh; vhÞ þ cuða; uh; vhÞ þ �ðruh;rvhÞ � ðph;r � vhÞ þ �ðg#h; vhÞ
� h~uu; ��hvh þ a � rvhi ¼ hf ; vhi þ �ðg#0; vhÞ þ BR;uðvhÞ;

ð37Þ

ðqh;r � uhÞ � ð~uu;rqhÞ ¼ 0; ð38Þ

ð@t#h;  hÞ þ c#ða;#h;  hÞ þ �ðr#h;r hÞ
� h ~##; ��h h þ a � r hi ¼ hQ;  hi þ BR;#ð hÞ:

ð39Þ

As mentioned earlier, we may understand that this problem is posed in a region R � �
formed by an arbitrary union of elements K of the finite element partition. When
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R ¼ �, B�;uðvhÞ ¼ 0 and B�;#ð hÞ ¼ 0 with homogeneous boundary conditions.
Otherwise, these boundary terms may depend on the way the convective term is
written, but in any case they will be due to the action exerted by the fluid outside R on
its boundary.

3.1 Conservation
Different conservation statements can be obtained by taking appropriate test functions
in the discrete variational problems (37)-(39). They all hold at the continuous level, but
not at the discrete one, since a will not be exactly divergence free. In what follows, R is
considered strictly contained in � to allow us taking constant test functions in R.
Otherwise, if R ¼ � the homogeneous Dirichlet conditions have to be replaced by the
appropriate fluxes.

3.1.1 Conservation of linear momentum and heat. Let ek be the vector of Rd with the
k-th component equal to 1 and the rest equal to 0. Taking vh ¼ ek in Equation (37) it
follows that:

d

dt

ð
R

uh;k þ cuða; uh; ekÞ ¼
ð

R

½fk þ �gkð#0 � #hÞ� þ BR;uðekÞ:

This equation can be understood as a conservation of linear momentum in a region R
provided cuða; uh; ekÞ ¼ 0 or has only contributions on @R. If the conservative form of
the convective term is used it is obvious that cc

uða; uh; ekÞ ¼ 0 (see Equation (35)), so
that the conservative form always conserves linear momentum. On the other hand, it is
immediately checked that:

cnc
u ða; uh; ekÞ ¼ �

ð
R

uh;kr � uh þ
ð

R

~uu � ruh;k þ
ð
@R

ðn � uhÞuh;k;

where n is the unit normal exterior to @R. From Equation (38), it follows that the first two
terms in this equation are zero, provided we can take qh ¼ uh;k. Thus, the non-
conservative form conserves linear momentum if equal velocity-pressure interpolations
are used. Note that this would not be possible using the Galerkin method. This fact was
already noticed in Hughes and Wells (2005).

From the expression of the skew-symmetric form of the convective term, it is clear
that it has the same properties as the non-conservative form, since now:

css
u ða; uh; ekÞ ¼ �

1

2

ð
R

uh;kr � uh þ
1

2

ð
R

~uu � ruh;k þ
1

2

ð
@R

ðn � uhÞuh;k:

A similar analysis can be undertaken for the heat equation. If  h ¼ 1 in Equation (39) it
follows that:

d

dt

ð
R

#h þ c#ða;#h; 1Þ ¼
ð

R

Qþ BR;#ð1Þ:

This equation can be understood as a conservation of heat in a region R provided
c#ða;#h; 1Þ ¼ 0 or contributes only with terms defined on @R. Once again, if the
conservative form of the convective term is used, cc

#ða;#h; 1Þ ¼ 0 (see Equation (36)),
so that the conservative form always conserves heat. On the other hand:
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cnc
# ða;#h; 1Þ ¼ �

ð
R

#hr � uh þ
ð

R

~uu � r#h þ
ð
@R

ðn � uhÞ#h:

From Equation (38), it follows that the first two terms in this equation are zero, provided we
can take qh ¼ #h. Thus, the non-conservative form conserves heat if equal temperature-
pressure interpolations are used. As for the Navier-Stokes equations, the same conclusion
applies to the skew-symmetric form of the convective term in the heat equation.

3.1.2 Conservation of angular momentum. Conservation of angular momentum for
the continuous version of Equation (37) is obtained by taking v ¼ ek � x, where x
is the position vector. For all vectors w it follows that w � v ¼ x �wjk (the k-th
component of x �w). Note also thatr � ðek � xÞ ¼ 0.

If we take vh ¼ ek � x , a necessary condition to have a global angular momentum
conservation statement is that the viscous term vanishes. It is readily checked that:

�ðruh;rðek � xÞÞ ¼ �
ð

R

r� uhjk;

which is in general not zero. LetrS be the symmetrical gradient operator. The viscous
term at the continuous level could also be written as 2�ðrSu;rSvÞ. Since
rSðek � xÞ ¼ 0, we conclude that the viscous term has to be written as
2�ðrSuh;rSvhÞ to allow global conservation of angular momentum. However,
writing the viscous term this way is obviously not enough. The convective term must
also vanish when vh ¼ ek � x (or lead only to boundary contributions). If the non-
conservative form is used we have that:

cnc
u ða;uh;ek�xÞ¼�

ð
R

ðr �uhÞx�uhjkþ
ð

R

~uu �rðx�uhjkÞ

þ
ð
@R

ðn �uhÞx�uhjk:
ð40Þ

We could guarantee that the first two terms vanish only if we could take qh¼x�uhjk ,
which would be possible only if the pressure interpolation is of one order higher than
the velocity interpolation. This does not make sense for the approximation of the
Navier-Stokes equations, and therefore we consider not possible to have angular
momentum conservation using the non-conservative form of the convective term.
However, we can take qh¼Phðx�uhjkÞ in Equation (38), and therefore Equation (40)
reduces to:

cnc
u ða;uh;ek�xÞ¼�

ð
R

ðr �uhÞP?h ðx�uhjkÞþ
ð

R

~uu �rP?h ðx�uhjkÞ

þ
ð
@R

ðn �uhÞx�uhjk;

and, formally, P?h ðx�uhjkÞ is of order r þ 1, r being the interpolation order. Thus, the
error involved in the approximation of the angular momentum will be small.
Concerning the contribution from the velocity subscales in Equation (37), it holds:

�h~uu;a �rðek�xÞi¼�
ð

R

~uu�uhjk; ð41Þ
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which is zero if the subscales are L2 orthogonal to the finite element space. Clearly, the
same comments apply to the skew-symmetric form of the convective term.

Let us move our attention to the conservative form defined in Equation (35). It is
readily checked that:

cc
uða; uh; ek � xÞ ¼

ð
R

~uu � uhjk; ð42Þ

This, together with Equation (41), yields:

cc
uða; uh; ek � xÞ � h~uu;a � rðek � xÞi ¼ 0;

so that we obtain the statement of angular momentum conservation:

d

dt

ð
R

x � uh ¼
ð

R

x � ½f þ �gð#0 � #hÞ� þ BR;uðek � xÞ

when the conservation form of the convective term is employed, independently of
whether the velocity subscales are orthogonal or not to the finite element space.

3.1.3 Conservation of kinetic energy and heat energy. The last conservation
statements we wish to discuss are those of kinetic energy for the Navier-Stokes
equations and of heat energy for the heat equation. By ‘‘energy’’ we mean simply the L2

norm of the velocity or the temperature, although in particular the L2 norm of the
temperature, that we call ‘‘heat energy’’, is not a physical energy. For the continuous
problem, conservation of these quantities is obtained by taking the test functions equal
to the velocity and the temperature, respectively, and using in a crucial manner the fact
that the velocity is solenoidal to conclude that the convective terms in the
corresponding equations do not contribute.

In the discrete case, we need to have cuða; uh;uhÞ ¼ 0 and c#ða;#h; #hÞ ¼ 0. This is
automatically satisfied for the skew-symmetric forms of these convective terms (this
leads in fact to their definition), but not for the conservative or non-conservative forms.
Therefore, only the skew-symmetric expressions in Equations (35) and (36) may lead to
conservation of kinetic energy and of heat energy, respectively.

When obtaining energy balance statements is when the importance of orthogonal
and dynamic subgrid scales is more evident. To this end, it is enlightening not only to
take vh ¼ uh, qh ¼ ph and  h ¼ #h (for each t 2 ð0;TÞ), but also to test the equations
for the subscales (26) and (28) (recall that we are assuming �2 ¼ 0) by ~uu and ~##,
respectively. If this is done, we get:

1

2

d

dt
kuhk2

R þ �kruhk2
R �

X
K�R

h~uu; ~PPð��huh þ a � ruh þrphÞiK ¼Wh; ð43Þ

1

2

d

dt
k~uuk2

R þ ��1
1 k~uuk2

R �
X
K�R

h~uu; ~PPð��huh � a � ruh �rphÞiK ¼ ~WW ; ð44Þ

1

2

d

dt
k#hk2

R þ �kr#hk2
R �

X
K�R

h ~##; ~PPð��h#h þ a � r#hÞiK ¼ Hh; ð45Þ
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1

2

d

dt
k ~##k2

R þ ��1
3 k ~##k2

R �
X
K�R

h ~##; ~PPð��h#h � a � r#hÞiK ¼ ~HH : ð46Þ

In these expressions, k � kR is the L2 norm in R, hf ; gi ¼
Ð
K fg, Wh is the total

mechanical power on R due to uh (including the contribution from the Boussinesq
model), ~WW the total mechanical power on R due to ~uu, Hh the total heat power on R due
to #h and ~HH the total heat power on R due to ~##. Here and in what follows we have
assumed the stabilization parameters �1 and �3 constant in region R.

It is obvious from Equations (43)-(46) that there is no balance statement for the kinetic
energy of uh or the heat energy of #h alone, in the form of time variation plus dissipation
equal to external input. However, these balance statements can indeed be found when the
contributions from the finite element components and the subscales are added up. We will
further elaborate this point in the following subsection, but we may already notice that:

1

2

d

dt
kuhk2

R þ
1

2

d

dt
k~uuk2

R þ �kruhk2
R þ ��1

1 k~uuk2
R

� 2
X
K�R

h~uu; ~PPð��huhÞiK ¼Wh þ ~WW ;
ð47Þ

1

2

d

dt
k#hk2

R þ
1

2

d

dt
k ~##k2

R þ �kr#hk2
R þ ��1

3 k ~##k2
R

� 2
X
K�R

h ~##; ~PPð��h#hÞiK ¼ Hh þ ~HH :
ð48Þ

The second order derivatives can be neglected for linear interpolations (they identically
zero) or when ~PP is taken as the L2 projection to the space orthogonal to the corresponding
finite element space (of velocities or of temperatures) without boundary conditions. In any
case, from the expression of the stabilization parameters and some simple inverse estimates
it can be shown that:

�kruhk2
R þ ��1

1 k~uuk2
R � 2

X
K�R

h~uu; ~PPð��huhÞi � C �kruhk2
R þ ��1

1 k~uuk2
R

� �
;

for a constant C > 0, and similarly for the heat equation. Therefore, Equations (47)-(48) do
have the structure of time variation of energy plus dissipation equal to external input. In
Equations (43)-(46), there are some additional terms that can be understood as transfer of
energy between scales, as explained in subsection 3.2.

3.1.4 Summary. The results obtained in this subsection are collected in Table I for
the Navier-Stokes equations and in Table II for the heat equation. As we have seen, the
crucial point to obtain these results is the way in which the convective term is written.

Table I.
Conservation properties
for the Navier-Stokes
equations depending on
the expression of the
convective term

Convective term Linear momentum Angular momentum Kinetic energy

Conservative Yes Yes No
Non-conservative Yes No No

With equal u-p interpolation
Skew symmetric Yes No Yes

With equal u-p interpolation
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Concerning the conservation of energy, it has to be understood that this refers to a
balance in the sense described above, that is, including a positive dissipative term. As
we have seen, this applies to the sum of the finite element component and the subscales
(of velocity and of temperature), whereas the rest of conservation statements apply to
the finite element component only. In fact, from the expression of the approximate
equations for the subscales, (26) and (28), it can be seen that neither linear momentum
nor angular momentum can be conserved for ~uu (both will always decrease) and heat
cannot be conserved for ~## (it will also decrease).

3.2 Energy transfer terms
Let us take a closer look at the energy conservation Equations (43)-(46). Introducing the
definitions of Table III, these equations can be written as:

d

dt
E

u
h þDu

h þ Cu þ T u ¼ Wh;

d

dt
~EEu þ ~DDu þ Cu � T u ¼ ~WW ;

Table II.
Conservation properties

for the heat equation
depending on the
expression of the

convective term

Convective term Heat Heat energy

Conservative Yes No
Non-conservative Yes No

With equal p-# interpolation
Skew symmetric Yes Yes

With equal p-# interpolation

Table III.
Energy transfer terms

Equation

Energy Dissipation

uh E
u
h ¼

1

2
kuhk2

R
Du

h ¼ �kruhk2
R

~uu ~EEu ¼ 1

2
k~uuk2

R
~DDu ¼ ��1

1 k~uuk2
R

#h E#h ¼
1

2
k#hk2

R
D#h ¼ �kr#hk2

R

~## ~EE# ¼ 1

2
k ~##k2

R
~DD# ¼ ��1

3 k ~##k2
R

Cross scale dissipation Transfer term

uh C
u ¼ �

P
K�R ~uu; ~PPð��huhÞ

D E
K

T
u ¼ �

P
K�R ~uu; ~PPða � ruh þrphÞ

D E
K

~uu Cu �T u

#h C
# ¼ �

P
K�R

~##; ~PPð��h#hÞ
D E

K
T
# ¼ �

P
K�R

~##; ~PPða � r#hÞ
D E

K
~## C

# �T #
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d

dt
E
#
h þD#h þ C# þ T

# ¼ Hh;

d

dt
~EE# þ ~DD# þ C# � T # ¼ ~HH :

Note that with the Boussinesq model there is an energy input in the Navier-Stokes
equations in the form of external power, in our case contained in the term Wh, that is
not reflected in the heat equation.

Several remarks are in order:

. The dissipation terms are strictly positive. They contribute to decrease the
energy of the variable whose balance is expressed in the equation where they
appear.

. The cross scale dissipation terms defined in Table III appear in both the equation for
the finite element scale and for the subscale (in either the Navier-Stokes or the heat
equation). As explained earlier, they can be absorbed by the dissipation of both the
finite element scale and the subscale, but not by any of them independently.
Therefore, the cross scale dissipation terms couple the energy balance of the two
scales of the problem. However, these terms vanish as � ! 0 and �! 0, and are
otherwise active when viscosity and conductivity are high. In this case, it is known
that there is no scale separation, because the flow is completely resolved, i.e. direct
numerical simulation (DNS) resolution has been reached.

. The transfer terms appear with an opposite sign in the energy equation for the finite
element component and the subscale component. Thus, they certainly represent
transfer of energy between scales. This, together with the fact that the cross scale
dissipation terms vanish for vanishing viscosity and conductivity, leads us to
conclude that in this situation there is a scale separation between the finite element
components and the subscales. To arrive to this conclusion, it is essential to consider
the subscales dynamic and orthogonal to the finite element space.

3.3 Numerical dissipation
To conclude this section, let us discuss the concept of numerical dissipation of the
algorithm, both for the Navier-Stokes and the heat equation, and the possibility to
model turbulence using this dissipation.

One can consider as numerical dissipation the one that affects the finite
element component alone. If we write the subscales emanating from Equations (26)
and (28) as:

~uu ¼ �1
~PPðRuÞ � @t ~uu
� �

;

~## ¼ �3
~PPðR#Þ � @t

~##
� �

;

we may write the total dissipation of the finite element scales as:

"u
num :¼ ��1

X
K�R

h~PPðRuÞ � @t ~uu; ~PPð��huh þ a � ruh þrphÞiK ; ð49Þ
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"#num :¼ ��3

X
K�R

h~PPðR#Þ � @t
~##; ~PPð��h#h � a � r#hÞiK : ð50Þ

There are two main properties of "u
num that are of paramount importance in the

modeling of turbulent flows:

. For quasi-static subscales, it is shown in Guasch and Codina that "u
num behaves

as the molecular dissipation of the continuous problem when the assumptions of
classical statistical fluid mechanics apply and the mesh size h belongs to the
inertial range of the Kolmogorov spectrum. This is precisely the requirement
posed by Lilly to LES models (Lilly, 1967) and thus it poses the question of
whether additional LES modelling is required or not in our pure numerical
approach. Our claim is that the answer is no.

. For quasi-static subscales, f ¼ 0 (or it is a finite element function) and � ! 0
and, "u

num is non-negative at each point and at each time instant. However, for
dynamic subscales this cannot be guaranteed a priori. In fact, numerical
experiments show that "u

num can be negative at some points and some time
instants (Principe et al.) that is to say, dynamic subscales allow for backscatter.

When applicable, similar concepts can be applied to the dissipation of the heat
equation, "#num. However, in this case, there is an additional issue to consider, namely,
which is the ratio between "u

num and "#num, after appropriate scaling. This is what can be
considered the turbulent Prandtl number. In usual LES models, it needs to be assumed
a priori. In our case, it is an outcome of the numerical model.

If we introduce the effective turbulent viscosity and turbulent thermal conductivity:

�tur ¼
"u

num

kruhk2
; �tur ¼

"#num

kr#hk2
;

the turbulent Prandtl number may be defined as:

Prtur :¼ �tur

�tur
¼ "u

num

kruhk2

kr#hk2

"#num

: ð51Þ

In view of expressions (49) and (50), if for � ! 0 and �! 0 we neglect the influence of
the pressure gradient and assume that the gradients of velocity and temperature form
the same angle with a, we may estimate:

Pr2
tur 


�2
1

�2
3

¼ c2
1�

2 þ c2
2jaj

2h2

c2
1�

2 þ c2
2jaj

2h2
¼

1þ c2
2

c2
1

Pe2
h

Pr2 þ c2
2

c2
1

Pe2
h

; ð52Þ

where:

Peh :¼ jajh
�

; ð53Þ

is the element Péclet number. From Equation (52) it follows that:
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Prtur 

1

Pr
if Peh ! 0

1 if Peh !1
:

(

These limiting situations cannot be assumed in general turbulent flows. In a numerical
example, we will show that in fact the effective turbulent Prandtl number departs
significantly from Prtur ¼ 1, which is the value usually adopted when modelling
turbulent thermal flows.

4. Numerical examples
4.1 Flow in a differentially heated cavity with aspect ratio 8
As a first example of application of the formulation presented, we have modelled the
flow in a differentially heated cavity with aspect ratio 8. The data of the problem can be
found in Christon et al. (2002). The interest of this problem in that it displays transition
to chaos as the Rayleigh number is increased.

Three different Rayleigh numbers will be considered: Ra ¼ 3:45 105, where it is
known that a Hopf bifurcation has occurred and the flow is oscillatory, Ra ¼ 106 and
Ra ¼ 107. Chaotic behaviour is expected in the last two cases, which is fully developed
for the highest Rayleigh number.

In Figure 1 snapshots of temperature contours and streamlines at a certain time step
and for the three Rayleigh numbers are shown, with the only purpose to have an
impression of the flow pattern. These and the following results have been obtained on
a mesh of 10,721 nodal points and 10,500 bilinear quadrilateral elements. A second
order BDF time integration scheme has been used for the Navier-Stokes and heat
equation, whereas the subscales have been integrated using a backward Euler scheme.
The time step size used is 0.08.

It is not our purpose here to compare the results obtained against others than can be
found in the literature, but to see the effect of considering the subscales time-
dependent. In this case, we will label the resulting formulation DS, for dynamic
subscales. When the time derivative of the subscales is neglected and a � uh is used
as advection velocity, we will label the method as QSS, for quasi-static subscales.

To analyse the dynamical response of the formulation, we have plotted the
temperature evolution at the point in the middle of the cavity, as well as the pressure-
temperature cycle. Results are shown in Figures 2-4. The conclusions that may be
drawn from these pictures are:

. For Ra ¼ 3:45 105, both DS and QSS show the expected oscillatory behaviour.
However, DS has a wider p-# cycle, indicating less dissipation.

. For Ra ¼ 106 results obtained using DS and QSS are very similar. They both
display chaos, as it can be observed from the p-# cycle.

. For Ra ¼ 107 the solution obtained is fully chaotic. A very important point to
notice is that QSS has some oscillations in time, particularly visible in the p-#
cycle, that do not appear using DS. We have observed the same behaviour in
other problems (Codina et al., 2007; Codina and Principe, 2007).

4.2 Flow over a surface mounted obstacle
In this subsection, we present a numerical experiment showing the relationship
between the mechanical and the thermal dissipation associated to the numerical model
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we propose. This example is taken from Principe et al. (2010) to where the reader is
referred for details of the calculation.

The problem consists in modelling the flow over a surface mounted obstacle,
consisting in a cylinder of square cross section. The domain is discretized using a finite
element mesh of around 2.2 million linear tetrahedral elements. Just to have a feeling of
the flow, the instantaneous velocity contours (at a certain time instant) in the mid
section of the channel where the flow takes place are plotted in the top picture of

Figure 1.
Temperature contours
(top) and streamlines
(bottom) for the three

different Rayleigh
numbers: Ra ¼ 3.45 105,
Ra ¼ 106 and Ra ¼ 107
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Figure 2.
Results for Ra ¼ 3.45 105

Figure 3.
Results for Ra ¼ 106
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Figure 5. Velocity boundary conditions are prescribed on the left boundary, whereas
zero velocity is fixed on the bottom surface and zero normal velocity on the top
boundary of the computational domain. The outflow (right boundary) is left free.

Concerning the setting for the thermal analysis, only the temperature on the
obstacle is fixed to 1, whereas the rest of the boundary is assumed adiabatic. The
thermal expansion coefficient is � ¼ 0 (no Boussinesq coupling) and two Prandtl
numbers have been considered, namely, Pr ¼ 1 and Pr ¼ 100.

The interesting fact of this numerical simulation is to see which are the values
obtained for the turbulent Prandtl number associated to the formulation as given by
Equation (51) (with c1 ¼ 4 and c2 ¼ 2, the numerical parameters we use in the
calculations with linear elements). In Figure 5, we have plotted the temperature
contours at a certain time instant and the turbulent Prandtl number for Pr ¼ 1 and
Pr ¼ 100. The conclusion is clear: since the dissipations in Equation (51) (or the local
Péclet number in estimate Equation (53)) change from point to point, so does the
turbulent Prandtl number. In Figure 5, the local Péclet number has been computed with
a characteristic velocity per element, and it is therefore constant within each element of
the finite element mesh. It is observed that there are many elements in which the
turbulent Prandtl number is far from the value Prtur ¼ 1 usually adopted in LES
models.

5. Conclusions
The purpose of this paper has been to give a complete overview of a finite element
formulation for thermally coupled incompressible whose intention is to go beyond
stabilized finite element methods and, more precisely, to allow to simulate turbulent

Figure 4.
Results for Ra ¼ 107
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flows. Even though most of the points have been treated succinctly, the main aspects of
the method have been touched, namely:

. its derivation through a scale splitting in the variational multiscale context;

. the definition of the stabilization parameters through an approximate Fourier
analysis of the problem from a procedure applicable to general systems of
equations;

. the possibility of considering dynamic subscales; and

. the choice of the space of subscales as orthogonal to the finite element space.

Relevant to the possibility of simulating thermally coupled turbulent flows, we have
analyzed:

. the conservation properties of the formulation in terms of the expression of the
convective term;

. the dissipative structure, identifying the energy transfer terms and the
possibility to have scale separation and to model backscatter; and

Figure 5.
Results for the flow over a
surface mounted obstacle
in the mid section of the
channel (at a certain time
instant)
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. the numerical dissipation for both the Navier-Stokes and the heat equation,
introducing a unambiguous numerical definition for the turbulent Prandtl
number.

Even though there are many questions left open, we believe that the material presented
here is a clear indication of the potential of the approach we propose to model
turbulence, particularly in the case of thermally coupled flows.
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